
 Fundamentals
 The MERN stack is a powerful framework for full-stack web development, combining
 MongoDB, Express.js, React.js, and Node.js to create robust, scalable applications.
 MongoDB serves as the NoSQL database, offering flexibility with JSON-like
 document storage, which aligns seamlessly with JavaScript-based technologies.
 Express.js acts as the lightweight and efficient backend framework, enabling smooth
 communication between the server and database. React.js handles the frontend with
 a component-based architecture, facilitating dynamic, interactive, and reusable UI
 development. Finally, Node.js provides the runtime environment for executing
 JavaScript on the server, ensuring high performance and scalability. At Tetraskills, we
 leverage the MERN stack to deliver cutting-edge, end-to-end web solutions that meet
 modern business needs efficiently and effectively.

 HTML
 Basics :-

 ● HTML Introduction
 Learn the fundamentals of HTML, including its purpose, structure, and how it’s
 used to create webpages.

 ● HTML Editors
 Discover the tools required to write and edit HTML code, from basic text
 editors to advanced IDEs.

 ● HTML Basic
 Understand the foundation of HTML with examples of how to start building
 simple webpages.

 ● HTML Elements
 Explore the building blocks of HTML, including how tags, attributes, and
 content interact.

 ● HTML Attributes
 Learn how to enhance HTML elements using attributes like id , class , and
 style .

 ● HTML Headings
 Understand how to structure your document using different heading levels
 (<h1> to <h6>).

 ● HTML Paragraphs
 Learn how to create and format paragraphs using the <p> tag.

 Core :-
 ● HTML Styles

 Learn how to apply inline styles to HTML elements for basic design and
 layout.

 ● HTML Formatting
 Explore text formatting tags like , <i> , <u> , and others to style content.

 ● HTML Comments
 Learn to add comments in your code to make it more readable and
 maintainable.

 ● HTML Links
 Master creating hyperlinks using the <a> tag to connect webpages.

 ● HTML Images
 Understand how to add and optimize images using the tag.

 ● HTML Lists
 Learn to create ordered, unordered, and description lists for better content
 organization.

 ● HTML Tables
 Understand table structure with <table> , <tr> , <th> , and <td> tags.

 Intermediate :-
 ● HTML Colors

 Learn how to add colors to your HTML using names, HEX, RGB, and HSL
 values.

 ● HTML CSS
 Understand how to integrate CSS into HTML to style your webpages.

 ● HTML Favicon
 Learn how to add a favicon to your webpage using the <link> tag.

 ● HTML Page Title
 Understand the importance of the <title> tag in the <head> section of your
 document.

 ● HTML Block & Inline
 Learn the differences between block-level and inline-level elements.

 ● HTML Div
 Explore the <div> tag, a container element used to group and style sections
 of HTML.

 ● HTML Classes
 Learn how to use the class attribute to apply styles to multiple elements.

 ● HTML Id
 Understand how to use the id attribute for uniquely identifying elements.

 ● HTML JavaScript
 Learn how to integrate JavaScript into HTML using the <script> tag.

 ● HTML File Paths
 Understand the concept of absolute and relative file paths in HTML.

 ● HTML Head
 Learn about the <head> section and how it contains metadata, styles, and
 external links.

 ● HTML Layout
 Explore basic webpage layouts using containers, divs, and other elements.

 ● HTML Responsive
 Learn the basics of creating responsive webpages using meta tags and layout
 techniques.

 Advanced :-
 ● HTML Forms

 Master the creation of interactive forms using the <form> element.
 ● HTML Form Attributes

 Learn advanced form attributes like action , method , target , and their use
 cases.

 ● HTML Form Elements
 Understand the various form elements like <input> , <textarea> ,
 <select> , and <button> .

 ● HTML Input Types
 Explore the different input types like text, email, password, number, and more.

 ● HTML Input Attributes
 Learn advanced input attributes like placeholder , maxlength , min , and
 required .

 ● Input Form Attributes
 Dive deeper into attributes that can be applied to form inputs, enhancing their
 functionality.

 ● HTML Iframes
 Learn to embed content from external sources using the <iframe> tag.

 ● HTML Advanced Tables
 Master complex table structures using colspan and rowspan for
 multi-column and multi-row data.

 ● HTML Layout
 Explore basic webpage layouts using containers, divs, and other elements.

 ● HTML Responsive
 Learn the basics of creating responsive webpages using meta tags and layout
 techniques.

 CSS
 Basics :-

 ● CSS Introduction
 Learn the purpose of CSS, its role in styling webpages, and how it works
 alongside HTML.

 ● CSS Syntax
 Understand the basic syntax of CSS, including selectors, properties, and
 values.

 ● CSS Selectors
 Explore the different types of selectors and how they target specific HTML
 elements.

 ● CSS How To
 Learn how to apply CSS to your HTML using inline styles, internal styles, and
 external stylesheets.

 ● CSS Comments
 Discover how to add comments in CSS to make your code more organized
 and understandable.

 ● CSS Colors
 Learn how to add colors to your elements using color names, HEX, RGB, and
 HSL values.

 ● CSS Backgrounds
 Explore the various background properties to style webpage backgrounds
 effectively.

 ● CSS Borders
 Learn how to create and customize borders for your elements.

 ● CSS Margins
 Understand how to add space around elements using the margin property.

 ● CSS Padding
 Learn how to add space inside elements using the padding property.

 ● CSS Height/Width
 Master controlling the size of elements with the height and width
 properties.

 ● CSS Box Model
 Understand the box model, including content, padding, borders, and margins.

 Core :-
 ● CSS Outline

 Learn how outlines differ from borders and how to style them.
 ● CSS Text

 Explore the various properties to style text, including color, alignment, spacing,
 and decoration.

 ● CSS Fonts
 Learn how to use different fonts in your designs, including custom fonts.

 ● CSS Links
 Understand how to style hyperlinks using pseudo-classes like :hover ,
 :visited , and :active .

 ● CSS Lists
 Learn how to style ordered and unordered lists with custom markers and
 alignments.

 ● CSS Tables
 Discover how to style tables with borders, padding, and alignments.

 ● CSS Display
 Understand the display property and how it controls the layout of elements.

 ● CSS Position
 Learn about position properties (static , relative , absolute , fixed ,
 sticky) and their use cases.

 ● CSS Z-index
 Understand how to control the stack order of elements using z-index .

 ● CSS Overflow
 Learn to handle overflowing content with the overflow property.

 ● CSS Float
 Discover how to use the float property to position elements.

 ● CSS Align
 Understand alignment techniques for text and elements using CSS.

 ● CSS Rounded Corners
 Learn to create rounded corners for elements using the border-radius
 property.

 ● CSS Gradients
 Explore linear and radial gradients for creating background effects.

 ●

 Intermediate :-
 ● CSS Pseudo-classes

 Learn to style elements based on their state using pseudo-classes like
 :hover , :focus , and :nth-child .

 ● CSS Pseudo-elements
 Understand how to style parts of elements using pseudo-elements like
 ::before and ::after .

 ● CSS Shadows
 Learn how to create box and text shadows to add depth to your designs.

 ● CSS Navigation Bar
 Understand how to design responsive navigation bars with hover effects.

 ● CSS Dropdowns
 Learn to create dropdown menus using CSS.

 ● CSS Image Gallery
 Design beautiful image galleries with CSS.

 ● CSS Image Sprites
 Understand how to use image sprites to optimize webpage performance.

 ● CSS Forms
 Learn to style form elements for better user experience.

 ● CSS Website Layout
 Master basic website layouts using CSS.

 ● CSS Media Queries
 Understand how to use media queries to create responsive designs.

 ● CSS Flexbox
 Learn the Flexbox layout model to align and distribute space among items in a
 container.

 Advanced :-
 ● CSS Animations

 Discover how to create animations using keyframes and transitions.
 ● CSS 2D Transforms

 Learn how to apply 2D transformations like scaling, rotating, and translating
 elements.

 ● CSS 3D Transforms
 Understand how to create 3D transformations for more advanced effects.

 ● CSS Grid
 Master the Grid layout model for creating complex and responsive layouts.

 ○ Grid Intro: Learn the basics of the Grid layout.
 ○ Grid Container: Understand container-specific properties.

 ○ Grid Item: Explore item-specific properties.
 ● CSS Variables

 Learn how to define reusable values in your stylesheets using custom
 properties (CSS variables).

 ● CSS Box Sizing
 Understand how the box-sizing property affects the box model and layout.

 ● CSS Tooltips
 Learn to create tooltips for better user guidance and interactivity.

 ● CSS Pagination
 Design pagination for multi-page content.

 ● CSS Counters
 Understand how to use counters to create numbered lists and custom
 sequences.

 ● CSS Transitions
 Master smooth transitions between CSS states.

 ● CSS User Interface
 Learn to style user interface elements like buttons, sliders, and progress bars.

 ● CSS Responsive
 Master responsive web design techniques.

 ○ RWD Intro: Overview of responsive web design.
 ○ RWD Viewport: Learn to control the viewport for mobile devices.
 ○ RWD Media Queries: Use media queries to adapt layouts.
 ○ RWD Grid View: Understand grid-based responsive design.
 ○ RWD Images: Optimize images for responsiveness.

 Tailwind CSS
 Basics :-

 Getting Started with Tailwind CSS

 ● Installation and Setup: Learn how to install and set up Tailwind CSS in your
 project.

 ● Configuration (tailwind.config.js): Understand how to customize
 Tailwind CSS using the configuration file.

 2. Utility-First Workflow

 ● Understanding the Utility-First Approach: Learn the philosophy behind Tailwind
 CSS and its utility-first methodology.

 ● Applying Classes for Styling Directly in HTML/JSX: Discover how to use
 Tailwind’s utility classes to style elements directly in your code.

 Core :-

 Typography

 ● Font Sizes, Weights, Styles: Learn how to style text with different font sizes,
 weights, and styles.

 ● Text Alignment and Decoration: Understand how to align text and apply
 decorations like underlines or line-through.

 2. Spacing Utilities

 ● Padding and Margin: Explore how to control the spacing inside and around
 elements using padding and margin utilities.

 ● Gap (for Flex/Grid Layouts): Learn to set gaps between items in flexbox or
 grid layouts.

 3. Colors

 ● Text Colors, Background Colors, and Border Colors: Apply colors to text,
 backgrounds, and borders using utility classes.

 ● Customizing the Color Palette: Understand how to extend or modify the
 default color palette in the Tailwind CSS configuration file.

 Intermediate :-

 Flexbox and Grid Layouts

 ● Flexbox Utilities: Learn to use Tailwind’s flexbox utilities for flexible and
 dynamic layouts.

 ● Grid-Based Responsive Layouts: Discover how to create responsive designs
 using grid utilities.

 2. Responsive Design

 ● Breakpoints (sm , md , lg , xl , 2xl): Understand how to apply styles
 conditionally based on screen size.

 ● Conditional Styling with Media Queries: Use media query utilities to create
 adaptive designs.

 3. Hover, Focus, and Active States

 ● Pseudo-Class Utilities: Explore utilities for hover, focus, active, and other
 interactive states.

 ● Styling Interactive Elements: Learn to style buttons, links, and other interactive
 elements effectively.

 4. Typography Enhancements

 ● Line Height, Letter Spacing: Customize the readability of text with line height
 and letter spacing utilities.

 ● Custom Font Families: Learn to integrate and apply custom fonts in your
 Tailwind projects.

 Advanced :-

 Customizing Tailwind

 ● Adding Custom Themes and Plugins: Learn how to add custom themes and
 integrate plugins into your Tailwind setup.

 ● Extending the Default Configuration: Understand how to extend Tailwind’s
 default configuration to include additional utilities and styles.

 2. Animations and Transitions

 ● Using Transition, Duration, Ease: Master creating smooth transitions and
 controlling their timing and easing.

 ● Tailwind’s Animation Utilities: Discover Tailwind’s built-in animation classes
 for simple and effective animations.

 3. Dark Mode

 ● Implementing and Toggling Dark Mode: Learn to enable and switch between
 dark and light modes in your projects.

 ● Theming with Tailwind: Understand how to design and customize themes for
 both light and dark modes.

 For React-Specific Use :-

 Dynamic Class Binding

 ● Using classnames or clsx Packages: Learn how to dynamically bind
 Tailwind classes in JavaScript/React using popular helper libraries.

 ● Conditional Class Application in JSX: Understand how to apply classes
 conditionally based on state or props.

 2. Reusable Components with Tailwind

 ● Structuring UI Components (e.g., Buttons, Cards): Explore how to design and
 organize reusable UI components with Tailwind CSS.

 ● Prop-Based Styling for Reusability: Learn to use component props to apply
 dynamic Tailwind styles for consistent and adaptable designs.

 3. Headless UI Integration

 ● Leveraging Components like Modals, Dropdowns, etc.: Integrate Tailwind with
 Headless UI to build accessible and customizable UI components like modals
 and dropdowns.

 Javascript
 Basics :-

 ● Introduction to JavaScript Course Topics
 Overview of what you will learn in this course.

 ● How Websites Work with JavaScript | Beginner’s Guide
 Learn how JavaScript integrates with HTML and CSS to make websites
 interactive.

 ● What is JavaScript? | Programming Essentials
 Introduction to JavaScript as a programming language and its key features.

 ● History of JavaScript | Evolution and Milestones
 A brief history of JavaScript and its evolution over the years.

 ● Creating First JavaScript File in VS Code | Step-by-Step Guide
 Learn to set up and write your first JavaScript file using VS Code.

 ● Values and Variables in JavaScript
 Understand how to declare variables and work with values in JavaScript.

 ● Data Types in JavaScript | Web Development Basics
 Explore different data types like strings, numbers, and booleans.

 ● Bonus: Advanced Data Types in JavaScript | Programming Tips
 Learn about advanced data types like objects and arrays.

 ● Expressions and Operators in JavaScript
 Discover how to write expressions and use arithmetic, comparison, and
 logical operators.

 ● Functions in JavaScript
 Learn how to create reusable blocks of code using functions.

 Core :-
 ● Arrays in JavaScript | Programming Challenges

 Understand arrays and how to perform operations like adding and removing
 elements.

 ● Strings in JavaScript | String Operations
 Learn string manipulation techniques such as concatenation and slicing.

 ● Math Objects in JavaScript | Advanced Concepts
 Explore the Math object to perform mathematical operations like rounding or
 generating random numbers.

 ● Window, Document, and Browser Object Models | Web Development Concepts
 Understand the browser environment and how JavaScript interacts with it.

 ● Events in JavaScript
 Learn how to handle user interactions like clicks and keypresses.

 ● Project: Background Gradient Generator
 Create a tool to generate custom gradients using JavaScript.

 ● Update on Hosting
 Understand the basics of hosting and deploying JavaScript projects.

 ● LocalStorage in JavaScript
 Learn how to store data persistently in the browser using LocalStorage.

 Intermediate :-
 ● Date & Time Objects

 Work with dates and times using JavaScript’s built-in Date object.
 ● Timing-based Events in JavaScript

 Learn about setTimeout and setInterval for creating timed actions.
 ● Objects in JavaScript

 Understand how to create and work with objects in JavaScript.
 ● ECMAScript 2015 – 2023

 Explore modern JavaScript features introduced in recent ECMAScript
 versions.

 ● Lexical & Scope Chaining
 Learn about variable scope and how JavaScript resolves variables.

 ● Closures in JavaScript
 Understand closures and their use cases in programming.

 ● First-Class Functions – Callbacks & Higher-Order Functions
 Discover the concept of first-class functions and how to use callbacks and
 higher-order functions.

 Advanced :-
 ● Promises

 Learn how to handle asynchronous operations using promises.
 ● Project: Dad Jokes with Promises

 Build a project that fetches jokes using APIs and handles them with promises.

 ● Project: Dad Joke with Async Await & Try Catch
 Enhance the jokes project by using async/await and error handling
 techniques.

 ● Advanced JavaScript
 Dive deeper into advanced JavaScript concepts like prototypes and event
 loops.

 ● Final Project: CRUD Operation Using the API
 Build a full-featured project to Create, Read, Update, and Delete data using
 APIs.

 React
 Basics :-

 ● Introduction | What is React
 Understand the basics of React and its core purpose.

 ● Set Up React Environment | Install React project in Windows
 Learn how to set up a React environment on Windows.

 ● Install React in macOS | React.js setup in MacOS
 Step-by-step guide to setting up React on macOS.

 ● Use and Learn React without install | Vite Code editor
 Explore how to use React without installation.

 ● Difference Between Framework and Library
 Understand the key differences between a framework and a library.

 ● Hello World | React.js app Code Flow
 Create a simple “Hello World” app and understand React’s code flow.

 ● File and Folder Structure
 Learn the standard structure of a React project.

 ● What is Component | Make First Component
 Understand React components and create your first one.

 ● Importing and Exporting Components
 Learn how to import and export components in React.

 ● Write Markup with JSX
 Understand JSX and how it integrates with React.

 ● JSX Exercise
 Practice creating JSX code.

 ● JSX Exercise Implementation
 Apply the JSX concepts with an exercise solution.

 ●

 Core :-
 ● JavaScript in JSX with Curly Braces

 Learn how to embed JavaScript in JSX.
 ● React.js Click Event and Function Call

 Handle user interactions with click events.
 ● State in React JS

 Understand state management in React.
 ● Project: Toggle or Hide Show

 Build a toggle/hide-show feature using React.
 ● Multiple Conditions of Else If

 Handle multiple conditions in React logic.
 ● Props in React.js | Pass Data Between Components

 Learn how to pass data between components using props.
 ● Default Props

 Set default values for props in React.
 ● Get Input Field Value | On Change Event

 Handle input values dynamically with onChange .
 ● Handle Checkbox in React

 Learn how to work with checkboxes in forms.
 ● Looping with Map Function

 Render lists using the map function.
 ● Reuse Component in Loop

 Reuse components dynamically within loops.
 ● Array Nested Looping with Components

 Work with nested arrays in React.
 ●

 Intermediate :-
 1. What are Hooks in React.js

 Introduction to React hooks and their purpose.
 2. UseState Hooks

 Manage state in functional components with useState .
 3. Use of useEffect Hook in React.js

 Understand side effects and use the useEffect hook.
 4. UseEffect Hook for Lifecycle Methods in React

 Mimic lifecycle methods in functional components.
 5. Dynamic and Conditional Inline Styles

 Apply styles dynamically in React components.

 6. Project: How API Call in UseEffect (CRUD Operation)
 Fetch, create, update, and delete data using APIs in React.

 7. Context API
 Share state and props globally with Context API.

 8. UseReducer Hook
 Learn advanced state management with useReducer .

 9. UseRef Hook
 Work with refs to manipulate DOM elements.

 10. UseLayoutEffect Hook
 Optimize rendering with useLayoutEffect .

 11. UseMemo Hook
 Improve performance by memoizing expensive calculations.

 12. UseCallback Hook
 Memoize functions for better performance.

 13. Custom Hook
 Create reusable custom hooks in React.

 Advanced :-
 ● Intro React-Router-Dom

 Introduction to React Router for navigation.
 ● What is React Routing

 Learn the fundamentals of routing in React.
 ● Why Use Client-Side Routing

 Understand the benefits of client-side routing.
 ● React Router Overview

 A detailed overview of React Router.
 ● Key Concepts of React Router

 Learn essential concepts like route matching and navigation.
 ● How Does Routing Work in React

 Understand the mechanism behind React routing.
 ● Setting Up React Router

 Set up React Router in your project.
 ● Dynamic Routing with URL Parameter

 Learn to create routes with dynamic parameters.
 ● Nested Routes

 Understand and implement nested routes.
 ● Programmatic Navigation

 Navigate between pages programmatically using React Router.
 ● Protected Routes (Authentication)

 Implement routes that require user authentication.

 ● Handling 404 Pages (Not Found)
 Create custom 404 error pages for undefined routes.

 NodeJS
 Introduction to Node.js :-

 Goal: Understand the basics of Node.js and set up your environment.

 ● Introduction to Node.js:
 – What is Node.js?
 – Why use Node.js?
 – Node.js architecture and event-driven model.

 ● Setup:
 – Install Node.js and npm (Node Package Manager).
 – Verify installation with node -v and npm -v .

 ● First Steps:
 – Write a simple “Hello World” program.
 – Execute JavaScript files using Node.js.

 Understanding Core Concepts :-
 Goal: Learn about the core modules and concepts in Node.js.

 ● Modules:
 – Understanding built-in modules (e.g., fs , http , path).
 – Learn how to import and use modules.

 ● File System:
 – Reading from and writing to files.
 – Working with directories.

 ● Creating a Simple Server:
 – Use the http module to create a basic web server.
 – Understand request and response objects.

 Deep Dive into Asynchronous Programming :-
 Goal: Master asynchronous programming in Node.js.

 ● Callbacks:
 – Understanding the callback pattern.
 – Handling errors in callbacks.

 ● Promises:
 – Introduction to Promises.
 – Converting callback-based functions to use Promises.

 ● Async/Await:
 – Using async/await syntax for cleaner asynchronous code.
 – Error handling in async/await.

 ExpressJS
 Working with Express.js :-

 Goal: Learn to use Express.js for building web applications.

 ● Introduction to Express.js:
 – Setting up a basic Express application.
 – Understanding middleware.

 ● Routing:
 – Define and use routes.
 – Handle different HTTP methods.

 ● Introduction to Postman:
 – How to handle different Http models

 MongoDB
 Connecting to a Database :-

 Goal: Learn to integrate a database with your Node.js application.

 ● Introduction to Databases:
 – Overview of SQL vs NoSQL databases.
 – Install and set up a simple database (e.g., MongoDB).

 ● Using Mongoose with MongoDB:
 – Set up Mongoose for MongoDB.
 – Create schemas and models.
 – Perform basic CRUD operations.

 Building a Project :-
 Goal: Build a simple project.

 ● Project Setup:
 – Define the project (e.g., a simple RESTful API).
 – Set up the project structure.

 ● Building the Backend:
 – Implement routes and controllers.
 – Connect to the database and implement CRUD operations.

 ● Testing and Debugging:
 – Use tools like Postman to test your API endpoints.
 – Debug and fix any issues.

 ● Project Completion:
 – Add any final features or enhancements.
 – Document your code and create a README file.

 Git and Github
 Git Basics :-

 Introduction to Git

 ● What is Version Control? Why Git?
 ● Installing Git (Windows/Mac/Linux)
 ● Setting up Git for the First Time:

 ○ git config --global user.name "Your Name"

 ○ git config --global user.email
 "youremail@example.com"

 ● Initializing a Repository: git init
 ● Adding Files to Staging:

 ○ git add .
 ○ git add <file>

 ● Committing Changes: git commit -m "Initial Commit"
 ● Viewing Commit History: git log
 ● Understanding the Three Stages:

 ○ Working Directory
 ○ Staging Area
 ○ Repository

 Core Git Concepts :-
 Branching and Merging

 ● What Are Branches?
 ● Creating Branches: git branch <branch-name>
 ● Switching Branches: git checkout <branch-name>
 ● Merging Branches: git merge <branch-name>
 ● Resolving Merge Conflicts

 Undoing Changes

 ● Undoing Changes in the Working Directory: git checkout -- <file>
 ● Resetting Commits:

 ○ git reset --soft
 ○ git reset --mixed
 ○ git reset --hard

 ● Deleting a Branch: git branch -d <branch-name>

 Connecting Git and GitHub :-
 Linking Git and GitHub

 ● Linking Local Repository to GitHub:
 ○ git remote add origin <repository-URL>

 ● Pushing Code to GitHub:
 ○ git push -u origin main

 ● Pulling Code from GitHub:
 ○ git pull origin main

 Collaborating with GitHub

 ● Forking a Repository
 ● Cloning a Repository: git clone <repository-URL>
 ● Creating and Managing Pull Requests
 ● Reviewing and Merging Pull Requests

